Abstract

Zinc oxide is commonly used in pharmaceutical products to prevent or treat topical or systemic diseases owing to its antimicrobial properties, but it is scarcely used as preservative in topical formulations. The aim of this work was to investigate the antimicrobial activity of zinc oxide (ZnO) powders on the five microbial strains used for Challenge Tests in order to evaluate this inorganic compound as a preservative in topical formulation and assess relationships between the structural parameters of ZnO particles and their antimicrobial activity. For this purpose, the physicochemical characteristics of three ZnO grades were measured and their antimicrobial efficacy against the following micro-organisms - Escherichia coli; Staphylococcus aureus; Pseudomonas aeruginosa; Candida albicans; Aspergillus brasiliensis - was assessed using disc diffusion susceptibility tests and a broth dilution method. The comprehensive dataset of physicochemical characteristics and antimicrobial activities (MIC and MBC) is discussed regarding methodological issues related to the particulate nature of ZnO and structure-activity relationships. Every ZnO grade showed bactericidal and antifungal activity against the five tested micro-organisms in a concentration dependent manner. ZnO particles with smaller size, larger specific area and higher porosity exhibit higher antimicrobial activity. Such trends are related to their mechanisms of antimicrobial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.