Abstract
Antimicrobial enzyme, glucose oxidase (GOX), was covalently immobilized onto amino- and carboxyl-plasma-activated biorientated polypropylene films (BOPP) via glutaraldehyde and carbodiimide chemistries. N2-plasma + NH3 and N2-plasma + CO2 treatments were utilized to create amino (1.1 nmol/cm2) and carboxyl (0.9 nmol/cm2) groups densities onto the surface of BOPP films. GOX-immobilized onto amino-activated BOPP films using 2.5% glutaraldehyde produced higher enzymatic activities than GOX-immobilized by 0.4% carbodiimide. Further immobilizations were carried out with glutaraldehyde as the coupling agent at temperatures of 4–75°C at pH 5.6 and 7.2. 10 s treatment was sufficient to immobilize GOX at high temperatures in both pH conditions, producing enzymatically active films which remained active over 30 days of storage. GOX covalently immobilized onto BOPP films completely inhibited the growth of Escherichia coli and substantially inhibited the growth of Bacillus subtilis; thus, they may have great potential to be exploited in various antimicrobial packaging film applications. Copyright © 2005 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.