Abstract

Contamination with spoilage organisms and Listeria monocytogenes are major concerns for quality and safety of cooked ready-to-eat (RTE) meat products. Thus, the objective of this study was to investigate the use of antimicrobial starch packaging films to control competitive microbiota and L. monocytogenes growth on a RTE ham product. Starch packaging films were prepared with different bioactives, gallic acid, chitosan, and carvacrol, using subcritical water technology. The viability of the incorporated strains on ham in contact with different antimicrobial starch packaging films was examined during 28-day storage period at 4 °C. Starch films with gallic acid had the least effect on ham antimicrobial activity; starch films with chitosan and carvacrol fully inhibited L. monocytogenes growth throughout 4 weeks of storage. RTE meat microbiota was more resistant to the antimicrobials than L. monocytogenes. Starch films loaded with chitosan or chitosan and carvacrol did not fully inhibit growth of RTE meat microbiota but delayed growth of RTE meat microbiota by one to two weeks. Moreover, competitive meat microbiota fully inhibited growth of L. monocytogenes. Therefore, antimicrobial starch packaging films prepared by subcritical water technology used in this study showed a promising effect on inhibiting L. monocytogenes in RTE ham.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call