Abstract

Bioactive glass (BAG) is a synthetic bone substitute with intrinsic antimicrobial properties, used for bone defect filling. We evaluated the antimicrobial activity of two formulations of BAG S53P4 against representative pathogens of osteomyelitis: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli and Candida albicans. Antimicrobial activity of BAG S53P4 was assessed by isothermal microcalorimetry, a highly sensitive assay measuring metabolic-related microbial heat production in real-time. Standard CFUs-counting was performed in parallel. BAG granules (diameter 500−800 μm) and powder (<45 μm) were evaluated in two concentrations (400 and 800 mg/ml). Isothermal microcalorimetry was performed in glass ampoules containing growth medium, BAG and test microorganism, heat production was measured for 24 h. BAG S53P4 inhibited heat production of most-tested microorganisms with heat reduction of 60%–98% compared to positive control after 24 h of exposure to the highest-tested concentration (800 mg/ml). BAG S53P4 in powder formulation (<45 μm) inhibited more microbial growth than in granule formulation (500−800 μm), with the exception of C. albicans for which both formulations presented similar inhibition rates ranging between 87 % and 97 %. The BAG inhibitory ratios estimated from the variation in the growth rate constants of each microorganism compared to the growth control ranged between 2.55 % and 100 %. Comparable results were obtained by CFUs-counting, with complete reduction in cell viability of most microorganisms after ≤ 24 h of microbial exposure to BAG S53P4 powder. In summary, BAG S53P4 demonstrated efficient inhibition of microbial growth, especially in powder formulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call