Abstract

ObjectivesTo evaluate the antimicrobial activity of a new, transparent composite film dressing, whose adhesive contains chlorhexidine gluconate (CHG), against the native microflora present on human skin.MethodsCHG-containing adhesive film dressings and non-antimicrobial control film dressings were applied to the skin on the backs of healthy human volunteers without antiseptic preparation. Dressings were removed 1, 4 or 7 days after application. The bacterial populations underneath were measured by quantitative cultures (cylinder-scrub technique) and compared with one another as a function of time.ResultsThe mean baseline microflora recovery was 3.24 log10 cfu/cm2. The mean log reductions from baseline measured from underneath the CHG-containing dressings were 0.87, 0.78 and 1.30 log10 cfu/cm2 on days 1, 4 and 7, respectively, compared with log reductions of 0.67, −0.87 and −1.29 log10 cfu/cm2 from underneath the control film dressings. There was no significant difference between the log reductions of the two treatments on day 1, but on days 4 and 7 the log reduction associated with the CHG adhesive was significantly higher than that associated with the control adhesive.ConclusionsThe adhesive containing CHG was associated with a sustained antimicrobial effect that was not present in the control. Incorporating the antimicrobial into the adhesive layer confers upon it bactericidal properties in marked contrast to the non-antimicrobial adhesive, which contributed to bacterial proliferation when the wear time was ≥4 days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.