Abstract

This study assesses the Multilayer Perceptron (MLP) neural network, complemented by other Machine Learning techniques (CART, PCA), in predicting the antimicrobial activity of 140 newly designed imidazolium chlorides against Klebsiella pneumoniae before synthesis. Emphasis is on leveraging molecular properties for predictive analysis. Classification and regression decision trees (CART) identified the top 200 predictive molecular descriptors. Principal Component Analysis (PCA) reduced these descriptors to 5 components, retaining 99.57% of raw data information. Antimicrobial activity, categorized as high or low, was based on experimentally proven minimal inhibitory concentration (MIC), with a cut-point at MIC = 0.856mol/L. A 12-fold cross-validation trained the MLP (architecture 5-12-2 with 5 Principal Components). The MLP exhibited commendable performance, achieving almost 90% correct classifications across learning, validation, and test sets, outperforming models without PCA dimension reduction. Key metrics, including accuracy (0.907), sensitivity (0.905), specificity (0.909), and precision (0.891), were notably high. These results highlight the MLP model's efficacy with PCA as a high-quality classifier for determining antimicrobial activity. The study concludes that the MLP neural network, along with CART and PCA, is a robust tool for predicting the antimicrobial activity class of imidazolium chlorides against Klebsiella pneumoniae. CART and PCA, used in this study, allowed input variable reduction without significant information loss. High classification accuracy and associated metrics affirm the method's potential utility in pre-synthesis assessments, offering valuable insights for antimicrobial compound design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call