Abstract

Fungal approaches bio-synthesis of silver nanoparticles (AgNPs) have been given attention because of their cost effectiveness and environment friendliness. Therefore, fungal Aspergillus terreus (MTCC 9618) intermediated biosynthesis of AgNPs was conducted, and the SEM, EDS and XRD reports confirmed the synthesis of well-organized, structured and stabilized AgNPs. Antimicrobial efficacy of disk diffusion assay of AgNPs (10, 20 and 30[Formula: see text][Formula: see text]g/ml) dosage was confirmed against Staphylococcus aureus and Escherichia coli and found that has bactericidal effects against both strains. Broth assay was also confirmed through LB broth media and colony forming units (CFU) which defined that biosynthesized AgNPs had much potential effect against gram negative ([Formula: see text]ve) than gram positive ([Formula: see text]ve) due to its peptidoglycan thickness. AgNPs had adverse mode of action on both bacterial strains and resulting was found damaged site on cell wall, necrosis, shrinkage, influx out and ruptures of the cells according to SEM scanning profiles. This study promised to green and economical way of AgNPs biosynthesis along with targeted antimicrobial effects in food preservative, biomedical coating tools, fabrics and pharmaceutical industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call