Abstract

Electrospinning is conducted with polylactic acid (PLA) and tea polypheno (TP) to obtain PLA/TP composite nanofibrous films with high antimicrobial activity. An investigation of the composition, antimicrobial activity, and mechanism of these composite nanofibrous films was conducted by using infrared spectroscopy (FT-IR), inhibition zone method, fluorescence activated cell sorter (FACS), and transmission electron microscope (TEM). IR spectra results showed that TP and PLA composited well through valence bonds in PLA/TP composite nanofibrous films. Ranges of the inhibition zone for the growth of Escherichia coli (E. coli) and Staphylococcus (Staphylococcus aureus) were 3.67 and 3.71 cm in pure PLA nanofibrous films, but 5.17 and 5.67 cm in PLA/TP composite nanofibrous films, respectively. Results indicated that the antimicrobial activity of PLA/TP composite nanofibrous films were much higher than that of pure PLA nanofibrous films. Meanwhile, the antimicrobial activity against S. aureus was also slightly higher than E. coli. FACS results showed that the positive rate of PLA/TP composite nanofiber films was greater than that of pure PLA nanofibrous films, increasing from 1.45 and 0.78% to 9.26 and 6.47% against S. aureus and E. coli, respectively. The result of TEM indicated that PLA/TP composite nanofibrous films led to the death of bacteria by destroying the integrity of cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.