Abstract

In this short paper we make a proposal that the second law of thermodynamics holds true for a closed physical system consisting of pure antimatter in the thermodynamical limit, but in a reversed form. We give two plausible arguments in favour to this proposal: one refers to the CPT theorem of relativistic quantum field theories while the other one is based on general thermodynamical arguments. However in our understanding the ultimate validity or invalidity of this idea can be decided only by future physical experiments. As a consequence of the proposal we argue that the dynamical evolution of pure macroscopic antimatter systems can be very different from that of ordinary matter systems in the sense that sufficiently massive antimatter systems could have stronger tendency to form black holes during time evolution than their ordinary counterparts. Taking into account the various uniqueness theorems in black hole physics as well, as a result, antimatter could tracelessly disappear behind black hole event horizons faster in time than ordinary matter. The observed asymmetry of matter and antimatter could then be explained even if their presence in the Universe was symmetric in the beginning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.