Abstract
Several groups have achieved graft acceptance in the concordant hamster to rat model by using a combination of anti-proliferative drugs and conventional immunosuppressive therapy. However, such aggressive treatment often leads to the recipient dying with a functional xenograft, as a result of opportunistic infections. This study aimed to investigate the effects of a short course of therapy with an anti-MHC class II monoclonal antibody treatment (chimeric OX6 [cOX6]) in combination with cyclosporin A (CyA) in a concordant hamster-to-rat xenograft model. Rats receiving hamster cardiac xenografts were given CyA or cOX6 alone or in combination and were monitored daily to assess the effect of treatment on graft survival. Additional studies monitored the effect of treatment on the production of cytolytic anti-hamster antibodies by the recipient and the deposition of immunoglobulin (Ig)M and complement factors within the xenograft. Treatment with CyA only had no effect on graft survival, whereas treatment with cOX6 increased graft survival time by 2 days. The median graft survival time for cOX6+CyA was 76 days. cOX6 treatment of rats having undergone transplants inhibited the rise in cytotoxic anti-hamster antibodies in peripheral blood until day 5, whereas combination therapy completely inhibited anti-hamster antibody formation. Fluorescence-activated cell sorter analysis showed treatment with cOX6 significantly reduced circulating B cell numbers until day 5. Anti-MHC class II treatment also markedly reduced the deposition of both IgM and C3. Anti-MHC class II treatment with CyA gives long term survival in concordant xenografts without severe side effects. The mechanism of action of this combination is complex and could be caused by an initial inhibition of B cell function by the anti-MHC class II treatment and the subsequent inhibition of T cell dependent pathways by CyA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.