Abstract

An antimagic labeling of a graph G(V,E) is a bijection f mapping from E to the set {1,2,…, |E|}, so that for any two different vertices u and v, the sum of f(e) over all edges e incident to u, and the sum of f(e) over all edges e incident to v, are distinct. We call G antimagic if it admits an antimagic labeling. A forest is a graph without cycles; equivalently, every component of a forest is a tree.
 It was proved by Kaplan, Lev, and Roditty in 2009, and by Liang, Wong, and Zhu in 2014 that every tree with at most one vertex of degree two is antimagic. A major tool used in the proof is the zero-sum partition introduced by Kaplan, Lev, and Roditty in 2009. In this article, we provide an algorithmic representation for the zero-sum partition method and apply this method to show that every forest with at most one vertex of degree two is also antimagic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call