Abstract

The extracellular calcium-sensing receptor (CaSR), a seven transmembrane G-protein-coupled receptor, was cloned in 1993. Its activation was first associated to the regulation of calcium homeostasis; however, the presence in tissues unrelated with this role has revealed its participation in numerous other cell functions. We previously described CaSR expression in human adipocytes, and here we investigated the effect of its activation on adipocyte lipolytic activity by measuring glycerol release to the incubation medium. Treatment of adipocytes with CaSR agonists elicited an inhibitory effect on basal lipolysis, which was prevented by a CaSR antagonist. To further corroborate the antilipolytic effect of CaSR activation, lipolysis was evaluated under conditions that interfere with main antilipolytic regulatory pathways. Cells were preincubated with pertussis toxin (PT, a Gialpha protein inhibitor), the phosphatidylinositol 3 kinase (PI3K) inhibitors wortmannin and LY-294002 as well as the cAMP analog 8Br-cAMP, all of which influenced the antilipolytic effect of CaSR stimulation. In light of the current view of adipose tissue as an organ involved in whole-body metabolic control, the role of the CaSR modulating basal lipolysis elicits great interest, given its metabolic sensing capabilities due to the variety of ligands that regulate its activity, and its potential cross-talk with insulin and adipose tissue-secreted factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.