Abstract
Influenza remains one of the most serious infectious diseases. Gallic acid is one of the most common and representative phenolic acids found in various plants. This is an interesting subject to explore how gallic acid could inhibit H1N1 influenza virus infection by reducing the production of virulent proteins and interrupting autophagy machinery for influenza virus replication on the host cell. Cellular viability was assessed by XTT assay. The inhibitory effects on the H1N1 influenza virus were assessed by hemagglutination assay, plaque assay, and qRT-PCR. Western blot analysis was used for detecting protein levels of M1, M2, NP, LC3B, and beclin-1. Autophagy activity was demonstrated by acridine orange staining assay. The result demonstrated that there was no cytotoxic effect of gallic acid on A549 cells, and gallic acid could restore the cellular viability of H1N1 influenza virus-infected A549 cells within the experimental concentration treatment. Moreover, gallic acid could effectively restrain viral activity of the H1N1 influenza virus. After the treatment of gallic acid, the production of virulent H1N1 influenza virus proteins, that is, M1, M2, and NP protein were reduced. As for autophagic mechanism, both of the LC3B II conversion and the level ratio of LC3B II to LC3B I were notably decreased. The acridine orange staining assay also revealed decreased accumulation of autophagosomes in H1N1 influenza virus-infected cells. In conclusion, gallic acid suppresses H1N1 influenza viral infectivity through restoration of autophagy pathway and inhibition of virulent M1, M2, and NP protein production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.