Abstract

Microglial activation plays a pivotal role in the pathogenesis of various neurologic disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Thus, controlling microglial activation is a promising therapeutic strategy for such brain diseases. In the present study, we found that a ginseng saponin metabolite, compound K [20-O-D-glucopyranosyl-20(S)-protopanaxadiol], inhibited the expressions of inducible nitric-oxide synthase, proinflammatory cytokines, monocyte chemotactic protein-1, matrix metalloproteinase-3, and matrix metalloproteinase-9 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and primary cultured microglia. Subsequent mechanistic studies revealed that compound K suppressed microglial activation via inhibiting reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-κB/activator protein-1 activities with enhancement of heme oxygenase-1/antioxidant response element signaling. To address the anti-inflammatory effects of compound K in vivo, we used two brain disease models of mice: sepsis (systemic inflammation) and cerebral ischemia. Compound K reduced the number of Iba1-positive activated microglia and inhibited the expressions of tumor necrosis factor-α and interleukin-1β in the LPS-induced sepsis brain. Furthermore, compound K reduced the infarct volume of ischemic brain induced by middle cerebral artery occlusion and suppressed microglial activation in the ischemic cortex. The results collectively suggest that compound K is a promising agent for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.