Abstract

Using repositioning to find new indications for existing functional substances has become a global target of research. The objective of this study is to investigate the anti-inflammatory potential of psoralen derivatives (5-hydroxypsoralen, 5-methoxypsoralen, 8-hydroxypsoralen, and 8-methoxypsoralen) in macrophages cells. The results indicated that most psoralen derivatives exhibited significantly inhibited prostaglandin E2 (PGE2) production, particularly for 8-hydroxypsoralen (xanthotoxol) in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. In addition, xanthotoxol treatment decreased the PGE2, IL-6, and IL-1β production caused by LPS stimulation in a concentration-dependent manner. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which activated with LPS treatment, were decreased by xanthotoxol treatment. Mechanistic studies revealed that xanthotoxol also suppressed LPS-stimulated phosphorylation of the inhibitor of κBα (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells. The Western blot assay results show that xanthotoxol suppresses LPS-induced p65 translocation from cytosol to the nucleus in RAW 264.7 cells. Moreover, we tested the potential application of xanthotoxol as a cosmetic material by performing human skin patch tests. In these tests, xanthotoxol did not induce any adverse reactions at a 100 μΜ concentration. These results demonstrate that xanthotoxol is a potential therapeutic agent for topical application that inhibits inflammation via the MAPK and NF-κB pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call