Abstract
Dimemorfan (a sigma1 receptor agonist) showed neuroprotective properties in animal models of inflammation-mediated neurodegenerative conditions, but its effects on inflammatory cells and systemic inflammation remain unclear. The effects of dimemorfan on phorbol-12-myristate-13-acetate (PMA)- and N-formyl-methionyl-leucyl-phenylalanine (fMLP)- induced neutrophils and lipopolysaccharide (LPS)-activated microglial cells, as well as LPS-induced endotoxin shock in mice were elucidated. Dimemorfan decreased PMA- and fMLP-induced production of reactive oxygen species (ROS) and CD11b expression in neutrophils, through mechanisms independent of sigma1 receptors, possibly by blocking ROS production and G-protein-mediated intracellular calcium increase. Dimemorfan also inhibited LPS-induced ROS and nitric oxide (NO) production, as well as that of monocyte chemoattractant protein-1 and tumour necrosis factor-alpha (TNF-alpha), by inhibition of NADPH oxidase (NOX) activity and suppression of iNOS up-regulation through interfering with nuclear factor kappa-B (NF-kappaB) signalling in microglial cells. Treatment in vivo with dimemorfan (1 and 5 mg kg(-1), i.p., at three successive times after LPS) decreased plasma TNF-alpha, and neutrophil infiltration and oxidative stress in the lung and liver. Our results suggest that dimemorfan acts via sigma1 receptor-independent mechanisms to modulate intracellular calcium increase, NOX activity, and NF-kappaB signalling, resulting in inhibition of iNOS expression and NO production, and production of pro-inflammatory cytokines. These effects may contribute its anti-inflammatory action and protective effects against endotoxin shock in mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.