Abstract

Background and objectives Although apigenin exhibits various biological effects, its anti-inflammatory role in the periodontal field remains unknown. We examined the anti-inflammatory effects of apigenin and the underlying mechanism in nicotine- and lipopolysaccharide (LPS)-stimulated human periodontal ligament (hPDL) cells. Materials and methods Western blotting was used to examine the effect of apigenin (10–40 µM) on the LPS- and nicotine-induced expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and heme oxygenase-1 (HO-1), as well as the phosphorylation of mitogen-activated protein kinases (MAPKs), in hPDL cells. Pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E 2 (PGE 2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, and IL-12 were monitored using Griess reagents and ELISA. Results Incubation of hPDL cells with apigenin decreased LPS- and nicotine-induced HO-1 protein expression and activity. Apigenin significantly inhibited the nicotine- and LPS-induced production of NO, PGE 2, IL-1β, TNF-α, IL-6, and IL-12, and the upregulation of iNOS and COX-2 in hPDL cells. Hemin, a selective HO-1 inducer, reversed the apigenin-mediated suppression of nicotine- and LPS-induced NO, PGE 2 and cytokine production. Treatment with inhibitors of the phosphoinositide 3-kinase, MAPKs, p38, and JNK, as well as a protein kinase C inhibitor, blocked the anti-inflammatory effects of apigenin in nicotine- and LPS-treated cells. Conclusions Apigenin possesses anti-inflammatory activity in hPDL cells and works through a novel mechanism involving the action of HO-1. Thus, apigenin may have potential benefits as a host modulatory agent in the prevention and treatment of periodontal disease associated with smoking and dental plaque.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call