Abstract

Clinical evidence demonstrates that ubiquinol-10, the reduced active form of coenzyme Q10 (CoQ10H2), improves endothelial function through its antioxidant and probably its anti-inflammatory properties. We previously reported that a biomarker combination including miR-146a, its target protein IL-1 receptor-associated kinase (IRAK-1), and released interleukin (IL)-6, here collectively designated as MIRAKIL, indicates senescence-associated secretory phenotype (SASP) acquisition by primary human umbilical vein endothelial cells (HUVECs). We explore the ability of short- and long-term CoQ10H2 supplementation to affect MIRAKIL in HUVECs, used as a model of vascular aging, during replicative senescence in the absence/presence of lipopolysaccharide (LPS), a proinflammatory stimulus. Senescent HUVECs had the same ability as young cells to internalize CoQ10 and exhibit an improved oxidative status. LPS-induced NF-κB activation diminished after CoQ10H2 pretreatment in both young and senescent cells. However, short-term CoQ10H2 supplementation attenuated LPS-induced MIRAKIL changes in young cells; in senescent cells CoQ10H2 supplementation significantly attenuated LPS-induced miR-146a and IRAK-1 modulation but failed to curb IL-6 release. Similar results were obtained with long-term CoQ10H2 incubation. These findings provide new insights into the molecular mechanisms by which CoQ10H2 stems endothelial cell inflammatory responses and delays SASP acquisition. These phenomena may play a role in preventing the endothelial dysfunction associated with major age-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call