Abstract
Chronic inflammation, which is promoted by the production and secretion of inflammatory mediators and cytokines in activated macrophages, is responsible for the development of many diseases. Auranofin is a Food and Drug Administration-approved gold-based compound for the treatment of rheumatoid arthritis, and evidence suggests that auranofin could be a potential therapeutic agent for inflammation. In this study, to demonstrate the inhibitory effect of auranofin on chronic inflammation, a saturated fatty acid, palmitic acid (PA), and a low concentration of lipopolysaccharide (LPS) were used to activate RAW264.7 macrophages. The results show that PA amplified LPS signals to produce nitric oxide (NO) and various cytokines. However, auranofin significantly inhibited the levels of NO, monocyte chemoattractant protein-1, and pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor-α, and IL-6, which had been increased by co-treatment with PA and LPS. Moreover, the expression of inducible NO synthase, IL-1β, and IL-6 mRNA and protein levels increased by PA and LPS were reduced by auranofin. In particular, the upregulation of NADPH oxidase (NOX) 4 and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) induced by PA and LPS were suppressed by auranofin. The binding between the toll-like receptor (TLR) 4 and auranofin was also predicted, and the release of NO and cytokines was reduced more by simultaneous treatment with auranofin and TLR4 inhibitor than by auranofin alone. In conclusion, all these findings suggested that auranofin had anti-inflammatory effects in PA and LPS-induced macrophages by interacting with TLR4 and downregulating the NOX4-mediated NF-κB signaling pathway.
Highlights
IntroductionInflammation is a biological response for protecting against and repairing damage from infections, injuries, and toxins [1,2]
Licensee MDPI, Basel, Switzerland.Inflammation is a biological response for protecting against and repairing damage from infections, injuries, and toxins [1,2]
The study suggested the effects of auranofin on the inflammatory response induced by Palmitic acid (PA) and low concentration of LPS in RAW264.7 macrophages
Summary
Inflammation is a biological response for protecting against and repairing damage from infections, injuries, and toxins [1,2]. Acute and chronic inflammation leading to excessive inflammation has been reported as a major cause of disease including non-alcoholic fatty liver disease, diabetes, inflammatory bowel disease, rheumatoid arthritis, vascular disease, and various types of cancer [3,4]. Inflammatory reactions that could trigger these diseases are initiated by the infiltration of activated inflammatory cells into the damaged. Site [5], where they produce cytokines and chemokines, amplifying the inflammatory response [6]. Macrophages play important roles in the immune defense system by releasing pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin. Macromolecular ligand lipopolysaccharide (LPS) stimulates macrophages to produce pro-inflammatory cytokines and mediators [8].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.