Abstract

Although inflammation acts as host defense mechanism against infection or injury and is primarily a self limiting process, inadequate resolution of inflammatory responses leads to various chronic disorders. This work aimed to elucidate the anti-inflammatory effects of 2-methoxy-4-vinylphenol (2M4VP) isolated from pine needles in LPS-stimulated RAW264.7 cells. Some key pro-inflammatory mediators including nitric oxide (NO), prostaglandins (PGE(2)), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) were studied by sandwich ELISA and western blot. In addition, suppression of NF-κB and MAPK activation, and histone acetylation was studied by western blot analysis and immunostaining. 2M4VP dosedependently inhibited NO and PGE(2) production and also blocked LPS-induced iNOS and COX-2 expression. In addition, 2M4VP potently inhibited the translocation of NF-κB p65 into the nucleus by IκB degradation following IκB-α phosphorylation and the phosphorylation of MAPKs such as p38, ERK1/2, and JNK. Also, 2M4VP inhibited hyper-acetylation of histone H3 (Lys9/Lys14) induced by LPS. Taken together, our results suggest that 2M4VP, a naturally occurring phenolic compound, exert potent anti-inflammatory effects by inhibiting LPS-induced NO, PGE(2), iNOS, and COX-2 in RAW264.7 cells. These effects are mediated by suppression of NF-κB and MAPK activation and histone acetylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call