Abstract

Ergostatrien-3β-ol (EK100), isolated from the submerged whole broth of Antrodia camphorata, has antidiabetic, hyperlipidemic, and hepatoprotective activities. However, the antiphotodamage activity of EK100 has still not been revealed. Inflammation and collagen degradation contribute to skin photodamage and premature aging. In the present study, in vivo experiments were designed to investigate the antiinflammatory and antiphotodamaging activities of EK100 in hairless mice by physiological and histological analysis of the skin. Results indicated that topical application of EK100 (25 and 100 μM) for 10 weeks efficiently inhibited ultraviolet B (UVB)-induced wrinkle formation, erythema, and epidermal thickness in the mice skin. EK100 also restored UVB-induced collagen content reduction in hairless mice skin. In addition, the immunohistochemistry results indicated that EK100 significantly inhibited the UVB-induced expression of matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and nuclear factor kappaB (NF-κB) in the mouse skin. The expression of these proteins was similar to the Normal group after 100 μM EK100 treatment. EK100 inhibited collagen degradation in the skin through MMP-1 inhibition and antiinflammation. EK100 significantly reduced the transepidermal water loss (TEWL), indicating that EK100 protected skin from UVB-induced damage. Our findings strongly suggest that EK100 has significant beneficial antiinflammatory and antiphotoaging activities and that EK100 can be developed as an antiphotodamaging agent.

Highlights

  • The skin is the outermost tissue of the human body and is affected by environmental factors, such as solar radiation, smoking, and pollution

  • Chronic UV exposure increases the number of stratum corneum layers and keratinocytes expressing filaggrin, which is a marker of terminal differentiation [2,3]

  • The results suggested that topical application of EK100 inhibited ultraviolet B (UVB)-induced skin erythema and inflammation

Read more

Summary

Introduction

The skin is the outermost tissue of the human body and is affected by environmental factors, such as solar radiation, smoking, and pollution. Skin aging is a continual and complex process, and many factors are involved in this process. Photoaging is attributed to continuous exposure to ultraviolet (UV). The characteristics of skin aging include coarse wrinkles, hyperplasia, dryness, laxity and hyperpigmentation [1]. Chronic UV exposure increases the number of stratum corneum layers and keratinocytes expressing filaggrin, which is a marker of terminal differentiation [2,3]. Repeated exposure to sunlight causes damage to collagen fibers and an excessive deposition

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.