Abstract

A previous study reported the in vivo anti-inflammatory and antinociceptive activities of essential oil of the underground stem bark of Duguetia furfuracea, termed EODf. This study aimed to obtain a phenylpropanoid-enriched fraction from the D. furfuracea (EFDf) essential oil and to investigate its anti-inflammatory and antinociceptive effects. The chemical composition of the EFDf was determined by gas chromatography-mass spectrometry (GC-MS). The in vivo anti-inflammatory activity was evaluated with a lipopolysaccharide (LPS)-induced paw oedema model. The effects of the EFDf on the polymorphonuclear leukocyte recruitment and the inducible nitric oxide synthase (iNOS) expression were evaluated in mice footpads. Moreover, the in vivo antinociceptive effect was assayed using the formalin test and the LPS-induced thermal hyperalgesia model. In the EFDf, 8 major compounds were identified, with α-asarone (36.4%) and 2,4,5-trimethoxystyrene (27.8%) the main constituents. A higher concentration of phenylpropanoid derivatives was found in the EFDf, 64.2% compared to the EODf (38%). The oral (p.o.) treatment with the EFDf at a dose of 3mg/kg significantly attenuated the paw oedema, polymorphonuclear leukocyte migration, iNOS expression, and tumour necrosis factor alpha (TNF-α) production. The EFDf (10 and 30mg/kg) also inhibited both phases of the formalin test and caused a significant increase in the reaction time in the LPS-induced thermal hyperalgesia model. Finally, EFDf-treated animals did not show any alteration of motor coordination. The results suggest that the enrichment of 2,4,5-trimethoxystyrene and α-asarone enhances the anti-inflammatory activity of the EFDf compared to the EODf. In contrast, the antinociception promoted by the EFDf was similar to the EODf and was mediated via activation of adenosinergic and opioidergic receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call