Abstract

BackgroundCinnamon bark is one of the most popular herbal ingredients in traditional oriental medicine and possesses diverse pharmacological activities including anti-bacterial, anti-viral, and anti-cancer properties. The goal of this study is to investigate the in vivo and in vitro inhibitory effect of cinnamon water extract (CWE) on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α and its underlying intracellular mechanisms.MethodsCWE was orally administrated to mice for 6 days prior to intraperitoneal injection of LPS. Serum levels of TNF-α and interleukin (IL)-6 were determined 1 hour after LPS stimulation. Peritoneal macrophages from thioglycollate-injected mice were isolated and assayed for viability, cytokine expression and signaling molecules upon LPS stimulation. CWE was further fractioned according to molecular size, and the levels of total polyphenols and biological activities of each fraction were measured.ResultsThe oral administration of CWE to mice significantly decreased the serum levels of TNF-α and IL-6. CWE treatment in vitro decreased the mRNA expression of TNF-α. CWE blocked the LPS-induced degradation of IκBα as well as the activation of JNK, p38 and ERK1/2. Furthermore, size-based fractionation of CWE showed that the observed inhibitory effect of CWE in vitro occurred in the fraction containing the highest level of total polyphenols.ConclusionsTreatment with CWE decreased LPS-induced TNF-α in serum. In vitro inhibition of TNF-α gene by CWE may occur via the modulation of IκBα degradation and JNK, p38, and ERK1/2 activation. Our results also indicate that the observed anti-inflammatory action of CWE may originate from the presence of polyphenols.

Highlights

  • Cinnamon bark is one of the most popular herbal ingredients in traditional oriental medicine and possesses diverse pharmacological activities including anti-bacterial, anti-viral, and anti-cancer properties

  • Inflammation is a protective response for the purpose of removal of exogenous and endogenous harmful substances produced by injurious stimuli and is a part of the healing process in wounded tissues [7]. Since proinflammatory cytokines such as tumor necrosis factoralpha(TNF-α), interleukin(IL)-1 and IL-6, lipid mediators, proteases, and oxidants produced during the typical response can cause damage to normal tissues regardless of how and where the inflammatory response is triggered, the substances involved in the inflammatory response need to be tightly regulated

  • We investigated the in vivo and in vitro effects of cinnamon water extract (CWE) on lipopolysaccharide (LPS)-induced Tumor necrosis factor- α (TNF-α) and its underlying intracellular mechanisms

Read more

Summary

Introduction

Cinnamon bark is one of the most popular herbal ingredients in traditional oriental medicine and possesses diverse pharmacological activities including anti-bacterial, anti-viral, and anti-cancer properties. Inflammation is a protective response for the purpose of removal of exogenous and endogenous harmful substances produced by injurious stimuli and is a part of the healing process in wounded tissues [7]. Since proinflammatory cytokines such as tumor necrosis factoralpha(TNF-α), interleukin(IL)-1 and IL-6, lipid mediators, proteases, and oxidants produced during the typical response can cause damage to normal tissues regardless of how and where the inflammatory response is triggered, the substances involved in the inflammatory response need to be tightly regulated. A vast number of molecular studies have identified several target molecules involved in inflammatory changes, and most anti-inflammatory drugs currently used suppress the biosynthesis of the inflammatory mediators mentioned earlier [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call