Abstract
Some aircraft anti-icing fluids can dangerously weaken on hydrophobic surfaces. However, information about such fluids and surfaces was not full. Therefore, we considered the interaction of commercially available Newtonian and pseudo-plastic anti-icing fluids with super-hydrophilic and hydrophobic aluminum surfaces. In freezing rain simulations, no noticeable surface effect was observed on fluid endurance times at 10% ice coverage of the surfaces. The difference with previous works can be caused by fluid surface tensions, the contact angle hysteresis of test plates, and fluid viscosity (the last is irrelevant for Newtonian fluids). In further comparative studies, the roughness must also be considered because on rough hydrophobic surfaces the Newtonian fluid took longer to freeze once ice coverage surpassed 20% compared to smooth super-hydrophilic surfaces. Furthermore, the fluid physical adsorption in the surface texture leads to the drifting of receding contact angles of water on hydrophobic surfaces, thereby worsening their water-repelling. Thus, smooth hydrophobic surfaces are probably the preferred solution for ice mitigation systems contacting aircraft anti-icing fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.