Abstract
Maitake mushroom has been reported to favorably influence hypertension and diabetes mellitus. The purpose of this study was to compare the effects of whole Maitake mushroom powder and two extracts designated as ether soluble (ES) and water soluble (WS) on Zucker fatty rats (ZFR), a model of insulin resistance, and on spontaneously hypertensive rats (SHR), a model of genetic hypertension. In the initial study, we followed four groups of eight ZFR and SHR receiving special diets: a baseline diet (BD), BD + whole Maitake mushroom powder (20% w/w), BD + fraction ES (0.10% w/w), and BD + WS (0.22% w/w). Different effects of these dietary regimens on the 2 rat strains were found. At 35 days, only consumption of the ES diet significantly decreased systolic BP (SBP) in SHR (average 197 vs. 176 mm Hg, p < 0.001), while in ZFR only the groups consuming the whole Maitake and WS diets showed significantly decreased SBP (138 vs. 120-125 mm Hg, p < 0.001). A challenge test with losartan (an angiotensin II receptor blocker) indicates that angiotensin II does not play a major role in SBP regulation of ZFR, but does in SHR where consumption of ES relative to other groups significantly lowered activity of this system. In SHR, glucose, cholesterol, circulating insulin and HbA1C were virtually similar among all dietary groups; but whole Maitake (-22%), ES (-120%) and WS (-80%) diets were associated with decreased triglycerides, and the ES diet with lowered serum creatinine (-29%). In ZFR, circulating insulin and HbA1C were significantly decreased in the whole Maitake powder and ES groups, and tended to be lower in the WS group compared to control. In the ensuing studies, we gavaged ZFR once daily with water (control), 44 mg fraction WS, or 44 mg fraction WS plus 100 microg niacin-bound chromium (NBC). Oral gavage of WS clearly lowered SBP and circulating glucose concentrations, more so with the addition of chromium. We conclude that the examined forms of Maitake mushroom have antihypertensive and antidiabetic potential which differ among rat strains. The ES fraction may decrease SBP in SHR via alteration in the renin-angiotensin system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.