Abstract

BackgroundVitex pubescens has been used traditionally in hypertension treatment but not yet scientifically assessed. The objective of the study is to investigate the antihypertensive and vasorelaxant activities of V. pubescens, study its underlying pharmacological mechanisms, and identify the relevant vasoactive compounds. MethodsSuccessive extractions of V. pubescens leaf were carried out to produce petroleum ether (VPPE), chloroform (VPCE), methanol (VPME), and water (VPWE) extracts. Spontaneously hypertensive rats (SHRs) received a daily oral administration of the extracts (500 mg/kg/day; n = 6) or verapamil (15 mg/kg/day; n = 6) for 2 weeks, while the systolic and diastolic blood pressures were measured using non-invasive tail-cuff method. Vasorelaxation assays of the extracts were later conducted using phenylephrine (PE, 1 μM) pre-contracted aortic ring preparation. Mechanisms of vasorelaxation by the most potent fraction were studied using vasorelaxation assays with selected blockers/inhibitors. GC-MS was conducted to determine the active compounds. ResultsVPPE elicited the most significant diminution in systolic and diastolic blood pressure of treated SHRs and produced the most significant vasorelaxation in the aortic rings. Vasorelaxant effects of F2-VPPE were significantly reduced in endothelium-denuded aortic rings by glibenclamide (1 μM), whereas calcium chloride and PE-induced contractions were significantly suppressed. Endothelium removal of the aortic rings or incubation with indomethacin (10 μM), atropine (1 μM), methylene blue (10 μM), propranolol (1μM) and L-NAME (10 μM) did not significantly alter F2-VPPE-induced vasorelaxation. Seven compounds were identified using GC-MS, including spathulenol. ConclusionF2-VPPE exerted its endothelium-independent vasorelaxation by inhibition of vascular smooth muscle contraction induced by extracellular Ca+2 influx through trans-membrane Ca+2 channels and/or Ca+2 release from intracellular stores, and by activation of KATP channels. The vasorelaxation effects of V. pubescens could be mediated by the compound, spathulenol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.