Abstract

Mulberroside A (MUL) was purified from an ethanol extract of Morus alba root, and oxyresveratrol (OXY) was produced by enzymatic conversion of MUL. Normal rats, Triton WR-1339-induced hyperlipidemic rats, and high-cholesterol diet (HCD)-induced hyperlipidemic rats were orally treated with MUL or OXY (1−5mg/kg/day). MUL and OXY were administered 1h prior to concomitant treatment with Triton WR-1339 for a further 24h, whereas the drugs were administered concurrently with HCD for 4weeks. Oral MUL and OXY pre-treatment vs. water pre-treatment of Triton WR-1339-induced hyperlipidemic rats significantly (p<0.05) reduced the levels of serum lipids in a dose-dependent manner, while high-density lipoprotein cholesterol (HDL-C, or “good” cholesterol) levels were increased. Oral MUL and OXY treatment of HCD-fed rats also showed a significant (p<0.05) dose-dependent decrease in serum lipids, coronary artery risk index (CRI), and atherogenic index (AI), but not HDL-C. Furthermore, MUL and OXY treatment of HCD-induced hyperlipidemic rats demonstrated a significant dose-dependent improvement in the histological features of hepatic fatty degeneration. Aspartate aminotransferase and alanine aminotransferase values in OXY-treated normal rats were not significantly different from those in water-treated control rats. These results indicate that MUL and OXY might be developed as novel antihyperlipidemic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.