Abstract
Background: Diabetes mellitus (DM) is a chronic disease characterized by high blood glucose levels resulting from insulin resistance or inadequate insulin secretion. In the world, DM is one of the most frequent non-contagious diseases that affect more than 371 million people. Objective: This study aimed to evaluate the antihyperglycemic properties of the ethanol extract, subsequent fractions, and farnesol obtained from the leaves of Annona diversifolia on alloxan-induced diabetic and normal mice. Materials and Methods: Bioassay-guided fractionation of the ethanol extract of the leaves of A. diversifolia (EELAd) was performed on alloxan-induced Type 2 diabetic and normoglycemic (NM) mice. Oral glucose tolerance test (OGTT), oral sucrose tolerance test (OSTT), and oral lactose tolerance test (OLTT) were performed in fast NM mice (FNM). Results: The EELAd, CHCl3 fraction, and farnesol induced a significant reduction of postprandial hyperglycemia in acute and subchronic tests using AITD mice. When EELAd, CHCl3 fraction, and farnesol were tested on NM in subchronic assays, these did not affect glycemic levels. In the case of acute test on NM, only CHCl3 fraction induced a hypoglycemic effect at 2 h after the treatment. OLTT and OSTT showed that the EELAd, CHCl3 fraction, and farnesol induced a significant reduction of hyperglycemia levels in FNM at 2 h after a lactose or sucrose load comparable to acarbose. In the case of OGTT was observed a significant reduction of hyperglycemia levels in FNM mice at 2 h after a glucose load comparable to canagliflozin. Conclusion: The EELAd and farnesol induced a significant reduction of postprandial hyperglycemia on AITD mice in acute and subchronic assays. Our results suggest that the control of postprandial hyperglycemia may be mediated by the regulation of absorption of glucose and inhibition of disaccharide digestion such as sucrose and lactose. Finally, the results explained the use of A. diversifolia in Mexican traditional medicine as an antihyperglycemic agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.