Abstract

Accurate theoretical calculations (ab initio MP2/6-31G * counterpoise-corrected gradient optimization, harmonic and anharmonic vibrational analysis) on the fluorobenzene⋯chloroform complex predict a new type of bonding, termed the anti-hydrogen bond. This bond distinguishes itself by the contraction of the C–H bond of chloroform and a blue shift of the corresponding stretching frequency, i.e. features opposite to those characteristic for a hydrogen bond. The predicted blue shift was confirmed experimentally by double-resonance infrared ion-depletion spectroscopy. The calculated blue shift of the chloroform C–H stretching frequency (12 cm −1) agrees with the experimental value of 14 cm −1. The anti-hydrogen bond originates from the dispersive interaction between molecules (contrary to the hydrogen bond which is of electrostatic origin). It plays a significant role in benzene-containing molecular clusters and is expected to be of consequence for the structure of biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.