Abstract
Our universe consists mainly of regular matter, while the amount of antimatter seems to be negligible. The origin of this difference, known as the baryon asymmetry, remains undiscovered. Since the discovery of antimatter, many experiments have been carried out to study antiparticles and to compare matter and antimatter twins. Two of the most sensitive methods in physics, radiofrequency and optical spectroscopy, can be efficiently used to search for the difference. The successful synthesis and trapping of cold antihydrogen atoms opened the possibility of significantly increasing the sensitivity of matter/antimatter tests. This brief review focuses on a hydrogen/antihydrogen comparison using other independent spectroscopic measurements of single particles in traps and other simple atomic systems like positronium. Although no significant difference is detected in today’s level of accuracy, one can push forward the sensitivity by improving the accuracy of 1S–2S positronium spectroscopy, spectroscopy of hyperfine transition in antihydrogen, and gravitational measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.