Abstract

Antiguiding, as opposed to positive index-contrast guiding (or index-guiding), in microstructured air-silica optical fibers is shown to have a significant influence on the fiber's transmission property, especially when perturbations exist near the defect core. Antiguided modes are numerically analyzed in such fibers by treating the finite periodic air-silica composite (including the central defect) as the core and outer bulk silica region as the cladding. Higher-order modes, which can couple energy from the fundamental mode in the presence of waveguide irregularities, are predicted to be responsible for high leakage loss of realistic holey fibers. The modal property of an equivalent simple step-index antiguide model is also analyzed. Results show that approximation from a composite core waveguide to a simple step-index fiber always neglects some important modal characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call