Abstract

The increased formation and accumulation of advanced glycation end products (AGEs) has been implicated in pathogenesis of various chronic ailments, including diabetes-associated secondary complications, atherosclerosis, aging, inflammatory and neurodegenerative diseases. Therefore, inhibition of AGEs formation is an imperative strategy for alleviating diverse pathologies. Here, we have demonstrated the AGEs inhibitory activity of β-glucogallin, isolated for the first time from the roots of Asparagus racemosus. β-glucogallin significantly mitigated fructose-, glucose- and methylglyoxal-induced glycation of bovine serum albumin (BSA). Also, the presence of β-glucogallin decreased fructosamine and protein carbonyls content, and increased thiol group content in the fructose-BSA system. These activities of β-glucogallin from Asparagus racemosus underscore its likely pharmacological potential for impeding AGEs-related metabolic disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.