Abstract

The effect of antigen (ovalbumin) challenge on pulmonary hemodynamics, bronchoconstriction, and fluid filtration was investigated in Ringer's-perfused (non-recirculating) lungs that had been passively sensitized in vitro. Bolus ovalbumin injection (30 micrograms) produced immediate increases in pulmonary arterial pressure, peak intratracheal pressure, and lung weight within 1 min and secondary marked increases in intratracheal pressure and lung weight from 120 to 200 min. Electron microscopy of antigen-challenged isolated lungs showed evidence of both septal and intraalveolar edema. Ionophore A23187 (100 micrograms) challenge of nonsensitized lungs produced immediate pulmonary responses similar to antigen, whereas secondary increases in lung weight were smaller. Arachidonic acid pretreatment (1 microM) potentiated immediate antigen-induced increases in intratracheal pressure but did not affect pulmonary responses to ionophore challenge. Putative mediators of anaphylaxis including histamine, leukotrienes B4, C4, D4, and E4, platelet-activating factor, and substance P produced immediate changes in pulmonary arterial and/or intratracheal pressure similar to antigen challenge. Only platelet-activating factor and substance P partially mimicked the secondary edema formation noted following antigen challenge. Thus, antigen challenge in in vitro sensitized guinea pig lungs produced both immediate and secondary responses characterized by increases in vascular pressure, airway pressure, and edema formation. This occurred in the absence of circulating blood-formed elements and without a massive influx of cells. Synergism between mediators such as histamine, the leukotrienes, platelet-activating factor, and substance P released following antigen challenge may be necessary to produce the complete pathophysiological sequelae associated with antigen challenge in the perfused guinea pig lung.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.