Abstract
In order to clarify the onset mechanisms of drug-induced allergies, three fluorescent-labelled compounds were synthesized by subjecting sulfanilamide (SA), a base compound for sulfonamides, and its active metabolites, i.e. sulfanilamide hydroxylamine and sulfanilamide nitroso, to dansylation using dansylchloride. In other words, 5-dimethylamino-N-(4-aminobenzyl)-naphthalenesulfonamide (DNS-4ABA), 5-dimethylamino-N-(4-hydroxylaminobenzyl)-1-naphthalenesulfonamide (DNS-4HABA) and 5-dimethylamino-N-(4-nitrosobenzyl)-1-naphthalenesulfonamide (DNS-4NSBA) were synthesized as model haptens. When analysed by HPLC, a conjugate of DNS-4HABA and glutathione (GSH) with nucleophilic amino acids had two peaks (P-1 and P-2). FAB-MS and 1H-NMR revealed that the DNS-4HABA-GSH conjugate consisted of sulphinamide and semimercaptal. The reactivity of GSH to DNS-4ABA, DNS-4HABA and DNS-4NSBA was quantified by HPLC using an oxidization system (horseradish peroxidase/H2O2). The results show that production of DNS-4NSBA-GSH-conjugate was four to eight times higher than that of DNS-4HABA-GSH conjugate, but that DNS-4ABA did not bind with GSH. Skin reactions were assessed using guinea pigs, and strong delayed erythema was seen with DNS-4NSBA, which bound most strongly with GSH, whereas weak delayed erythema was seen with DNS-4ABA, which did not bind with GSH. This suggests a correlation between GSH conjugate production and skin reactions. DNS-4HABA enzymatically bound with proteins in rat and guinea pig liver cytosol and microsomal fractions. The proteins that bound to DNS-4HABA were purified by HPLC and then subjected to N-terminal amino acid analysis. Ubiquitin (10 kDa) and fatty acid binding protein (30 kDa) were detected in the rat liver cytosol fraction; retinol-dehydrogenase (35 kDa) in the rat microsomal fraction; and glutathione-S-transferase B (mμ) (25 kDa) in the guinea pig liver cytosol fraction. When DNS-4HABA or DNS-4NSBA binds to proteins that play important roles in the body, unexpected adverse reactions may occur. Furthermore, by utilizing our technique using model compounds, it may be possible to identify the carrier proteins of various compounds, including pharmaceutical agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.