Abstract

Development of fusion chimeras as potential vaccine candidates is considered as an attractive strategy to generate effective immune responses to more than one antigen using a single construct. Here, we described the design, production, purification and antigenicity of a fusion chimera (PfAMSP-Fu35), comprised of immunologically relevant regions of three vaccine target malaria antigens, PfAARP, PfMSP-3 and PfMSP-1. The recombinant PfAMSP-Fu35 is expressed as a soluble protein and purified to homogeneity with ease at a yield of ~ 7 mg L-1. Conformational integrity of the C-terminal fragment of PfMSP-1, PfMSP-119 was retained in the fusion chimera as shown by ELISA with conformation sensitive monoclonal antibodies. High titre antibodies were raised to the fusion protein and to all the three individual components in mice and rabbits upon immunization with fusion chimera in two different adjuvant formulations. The sera against PfAMSP-Fu35 recognized native parasite proteins corresponding to the three components of the fusion chimera. As shown by invasion inhibition assay and antibody mediated cellular inhibition assay, antibodies purified from the PfAMSP-Fu35 immunized serum successfully and efficiently inhibited parasite invasion in P. falciparum 3D7 in vitro both directly and in monocyte dependent manner. However, the invasion inhibitory activity of anti-AMSP-Fu35 antibody is not significantly enhanced as expected as compared to a previously described two component fusion chimera, MSP-Fu24. Therefore, it may not be of much merit to consider AMSP-Fu35 as a vaccine candidate for preclinical development.

Highlights

  • There have been increasing efforts in prevention and treatment strategies to control morbidity and mortality caused by malaria

  • Sequences of PfAARP, PfMSP-311 and PfMSP-119 were genetically coupled from the N to Cterminus to generate AMSP-Fu35, a chimeric gene construct with a C-terminal His tag, which was cloned in pET24b (+) (Fig 1)

  • Our results of antigenicity and other experiments showed that addition of AARP to Merozoite surface proteins (MSPs)-Fu24 did not provide synergistic effects in invasion inhibitory activity, these results have shown that more than two immunologically relevant regions may successfully be combined in a single construct without any immunological interference

Read more

Summary

Introduction

There have been increasing efforts in prevention and treatment strategies to control morbidity and mortality caused by malaria. These strategies have cumulatively resulted in ~ 18% and 48% reduction in malaria mortality rates and malaria cases respectively between 2015 and 2000 [1].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call