Abstract

Two antigenic variants of visna virus were isolated sequentially from a single sheep inoculated with a plaque-purified strain of virus designated 1514. The genetically stable variants, LV1-1 and LV1-4, are of two classes: LV1-1 is partially neutralized by antibody to the inoculum strain 1514, while LV1-4 is not neutralized by antibody to 1514. The genetic mechanism responsible for generating the antigenic variants was investigated by comparing the chymotryptic and tryptic maps of the envelope glycoprotein gp135 and core polypeptides (p30, p16, p14), and by comparing the pattern of large oligonucleotides produced by digestion of the RNAs by T1 ribonuclease. We show that only the peptide maps of gp135 differ among strains, that the number of peptide fragments altered is small and that gp135 is the polypeptide that elicits neutralizing antibody. The maps of the RNAs are identical. We conclude that mutation in the glycoprotein gene rather than recombination is more probably responsible for antigenic variation, and speculate on the special aspects of visna virus replication relevant to this phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.