Abstract

In this paper we study intra-host viral adaptation by antigenic cooperation - a mechanism of immune escape that serves as an alternative to the standard mechanism of escape by continuous genomic diversification and allows to explain a number of experimental observations associated with the establishment of chronic infections by highly mutable viruses. Within this mechanism, the topology of a cross-immunoreactivity network forces intra-host viral variants to specialize for complementary roles and adapt to host’s immune response as a quasi-social ecosystem. Here we study dynamical changes in immune adaptation caused by evolutionary and epidemiological events. First, we show that the emergence of a viral variant with altered antigenic features may result in a rapid re-arrangement of the viral ecosystem and a change in the roles played by existing viral variants. In particular, it may push the population under immune escape by genomic diversification towards the stable state of adaptation by antigenic cooperation. Next, we study the effect of a viral transmission between two chronically infected hosts, which results in merging of two intra-host viral populations in the state of stable immune-adapted equilibrium. In this case, we also describe how the newly formed viral population adapts to the host’s environment by changing the functions of its members. The results are obtained analytically for minimal cross-immunoreactivity networks and numerically for larger populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call