Abstract

Redirection of T cells to target and destroy tumors has become an important clinical tool and major area of research in tumor immunology. Here we present a novel, nanoparticle-based approach to selectively bind antigen-specific cytotoxic T cells (CTL) and redirect them to kill tumors, termed ATR (Antigen-specific T cell Redirectors). ATR were generated by decorating nanoparticles with both an antigen-specific T cell binding moiety, either peptide loaded MHC-Ig dimer or clonotypic anti-TCR antibody, and a model tumor cell binding moiety, anti-CD19 antibody to engage CD19+ tumor cells. ATR stably bind tumor cells and CTL in a dose dependent fashion and stimulate antigen-specific conjugate formation between those cells. ATR induced redirected lysis of tumor cells in vitro, as demonstrated by 51Cr-release killing. In vivo ATR administration led to reduced tumor growth in a SCID/beige human lymphoma treatment model. In summary, ATR represent a novel, nanoparticle based approach for redirecting antigen-specific CTL to kill tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.