Abstract
E rosette-forming (E+) cells from human secondary lymphoid tissue were incubated with high dose influenza A virus (Mem-Bel) in an attempt to generate suppressor T cells. Suppression was assayed by transferring the antigen-pulsed E+ cells into effector cultures consisting of E+ and E- cells stimulated with immunogenic amounts of either the inducing virus Mem-Bel) or the non-cross-reacting influenza B virus (B/HK). The transfer resulted in marked inhibition of IgG, IgA and IgM antibody production to Mem-Bel but not to the control antigen, B/HK virus. The suppressive effect was specific at the level of induction as well as expression since E+ cells exposed to high dose Mem-Bel could provide help to an effector culture containing E- cells and optimal dose of B/HK virus. However, metabolically active cells did not appear to be required for suppression. Thus, it could be elicited (a) after only 15 min incubation of E+ cells with high-dose virus and (b) by E+ cells exposed to irradiation, incubated in the presence of metabolic inhibitors, or disrupted by repeated freeze thawing. In contrast, treatment of E+ cells with pronase reversed the suppressive effect. Interestingly, virus heated to 70 degree C failed to induced suppression, while retailing the ability to elicit a normal helper response. Suppression induced by exposure to standard amounts of high-dose antigen was mediated by T cells of both helper/inducer (Leu-3a+) and suppressor/cytotoxic subsets (Leu-2a+), but not by B cells. Two groups of observations pointed to the B cell as the target of suppression. First, suppression could still be transferred to effector cultures in which helper T cells had been replaced by T cell-replacing factor or suppressor T cells removed by irradiation. Second, significant inhibition of antibody production was obtained when the transfer of antigen-pulsed E+ cells was delayed for up to 120 h after initiation of the effector culture. Taken together the results suggest that suppression in this system is due to the formation of an antigen bridge between specific receptor sites on the T cell membrane and the target. Although not dependent on triggering of metabolically active suppressor T cells the phenomenon highlights the need for care in interpreting the mechanism of suppression by high-dose antigen and could, in addition, represent a biologically important control mechanism capable of rapid inhibition of effector T cells and B cells in sites of high antigen concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.