Abstract

The assessment of antigen presentation by dendritic cells and subsequent antigen-dependent activation of T lymphocytes is a critical step underlying the efficacy of nanoparticle-based therapeutic vaccines. Since nanoparticle physicochemical properties determine their interactions with the immune system, the early stages of nanotechnology-based vaccine development commonly involve optimizing the particles' properties to create a formulation with desired stability, antigen release, targeting of desired cell populations, and efficacy. To accelerate this process, in vitro models suitable for the rapid assessment of a novel vaccine candidate's efficacy are highly desirable. One such model is described in this protocol. Herein, nanoparticles are formulated to deliver a model antigen, SIINFEKL (OVA257-264), the immunodominant class I peptide derived from ovalbumin. These nanoparticles are added to the culture of murine bone marrow-derived dendritic cells, which are subsequently co-incubated with CD8+ T cells from OT-I transgenic mice. The efficient antigen presentation by dendritic cells results in the antigen-dependent proliferation of CD8+ T cells, which is detected by flow cytometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call