Abstract

Foxp3(+) T regulatory cells (Tregs) are critically important for the maintenance of immunological tolerance, immune homeostasis, and prevention of autoimmunity. Dendritic cells (DCs) are one of the major targets of Treg-mediated suppression. Some studies have suggested that Treg-mediated suppression of DC function is mediated by the interaction of CTLA-4 on Tregs with CD80/CD86 on the DCs resulting in downregulation of CD80/CD86 expression and a decrease in costimulation. We have re-examined the effects of Tregs on mouse DC function in a model in which Ag-specific, induced Tregs (iTregs) are cocultured with DCs in the absence of T effector cells. iTreg-treated DCs are markedly defective in their capacity to activate naive T cells. iTregs from CTLA-4-deficient mice failed to induce downregulation of CD80/CD86, but DCs treated with CTLA-4-deficient iTregs still exhibited impaired capacity to activate naive T cells. The iTreg-induced defect in DC function could be completely reversed by anti-IL-10, and IL-10-deficient iTregs failed to downregulate DC function. iTreg-treated DCs expressed high levels of MARCH1, an E3 ubiquitin ligase, recently found to degrade CD86 and MHC class II on the DCs and expressed lower levels of CD83, a molecule involved in neutralizing the function of MARCH1. Both the enhanced expression of MARCH1 and the decreased expression of CD83 were mediated by IL-10 produced by the iTregs. Taken together, these studies demonstrate that a major suppressive mechanism of DC function by iTregs is secondary to the effects of IL-10 on MARCH1 and CD83 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call