Abstract

The cytotoxic response of splenic Lyt-2+ T cells to class I H-2 alloantigen-bearing stimulator cells was analyzed under limiting dilution conditions. One of 50 to one of 200 nylon wool-nonadherent (FACS-purified), small Lyt-2+ spleen cells of B6 origin gave rise in vitro to a cytotoxic T lymphocyte clone that specifically lysed targets bearing bm1 alloantigen. This population of alloantigen-specific cytotoxic lymphocyte precursors (CLP) was activated by different types of bm1 stimulator cells with different efficiency: 2 X 10(5) nonfractionated spleen cells, 5000 normal peritoneal cells, 400 to 10(4) L3T4+ helper T blasts, or 2000 to 10(4) Lyt-2+ T blasts induced clonal growth of this CLP pool. Irradiated or mitomycin-treated small (L3T4+ or Lyt-2+) bm1-derived T cells were inefficient stimulator cells for this response. Supplementation of culture medium with (recombinant) interleukin 2 was necessary and sufficient to support clonal development of alloantigen-triggered CLP in the presence of allogeneic T blasts. Under these limiting dilution conditions, we observed comparable cloning efficiencies for (wild-type) Kb-allospecific splenic Lyt-2+ CLP from bm1 mice generated in response to either irradiated B6 spleen cells or inactivated B6-derived T cell lines (EL4 and RBL-5 lymphoma cells). The data indicate that normal T lymphoblasts as well as tumor T cell lines stimulate clonal development in vitro of class I H-2-allospecific cytotoxic T lymphocytes in the presence of interleukin 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.