Abstract

Cognate interactions of naive T cells with antigen-presenting dendritic cells require physical cell–cell contacts leading to signal induction and T cell activation. Using a three-dimensional collagen matrix videomicroscopy model for ovalbumin peptide-specific activation of murine and oxidative mitogenesis of human T cells, we show that T cells maintain vigorous migration upon cognate interactions to DC (dendritic cell), continuously crawl across the DC surface, and rapidly detach (median within 6–12 min). These dynamic and short-lived encounters favor sequential contacts with the same or other DC and trigger calcium influx, upregulation of activation markers, T blast formation, and proliferation. We conclude that a tissue environment supports the accumulation of sequential signals, implicating a numeric or “digital” control mechanism for an ongoing primary immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.