Abstract

Adoptive transfer of polyclonal CD4+CD25+ regulatory T cells (Treg) can tolerize transplantation alloresponses. Treg are activated via their specific TCR, but the antigen specificity of wild-type Treg remains elusive, and therefore controlling potency and duration of Treg activity in the transplantation setting is still not feasible. In this study, we used murine graft-versus-host disease (GVHD) as a model system to show that antigen-specific Treg suppress the response of T effector cells to alloantigens in vitro and prevent GVHD in vivo. The suppressive potential of antigen-specific Treg was much greater than that of polyclonal Treg. To acquire large numbers of antigen-specific Treg, we transduced CD4+CD25- cells with foxp3, and found that these foxp3-induced Treg suppress alloresponses in vitro and prevent GVHD in vivo as effectively as naturally derived CD4+CD25+ Treg. Furthermore, we used an antigen-specific CD4 Th1 clone as a source of foxp3-induced Treg after transduction with foxp3, and found those Treg to effectively prevent GVHD in an antigen-dependent manner. The findings of this study provide a basis for the concept that the onset and potency of the suppression by Treg can be regulated, and suggest a novel approach to enhance the feasibility and effectiveness of inducing tolerance by Treg as an adoptive immunotherapy in transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.