Abstract

Organs transplanted from pig to primate are rejected within minutes or hours by an antibody-dependent, complement-mediated mechanism [hyperacute rejection (HAR)]. Even after depletion of anti-Gal alpha 1-3Gal (Gal) antibody (Ab), for example by extracorporeal immunoadsorption, return of natural Ab is believed to be a major factor in the initiation of acute humoral xenograft rejection. Various non-human primates are used as recipients of pig organs in experimental discordant xenotransplantation (XTx) models. However, anti-Gal IgM and IgG levels in non-human primates may differ from those in humans. Serum levels of anti-Gal IgM and IgG were measured by enzyme-linked immunosorbent assay (ELISA) in humans (n=14), chimpanzees (n=8), baboons (n=214), cynomolgus monkeys (n=29), rhesus monkeys (n=23) and Japanese monkeys (n=6). The mean level of anti-Gal IgM was significantly higher in chimpanzees than in other groups, while in rhesus monkeys it was significantly lower than in other groups, except baboons and Japanese monkeys. The mean human anti-Gal IgG level was higher than in other groups and this difference reached statistical significance except with regard to chimpanzees. The mean anti-Gal IgG level in baboons was significantly lower than that in humans, chimpanzees and cynomolgus monkeys. The measured differences in anti-Gal IgM and IgG levels may affect the kinetics of Ab removal and rate of return in different species, and thus may have relevance for translating work in non-human primate models to the clinical setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call