Abstract
Antifungal susceptibility testing (AST) is crucial in clinical settings to guide appropriate therapy. Nevertheless, discrepancies between treatment response and some results still persist, particularly in detecting resistance to amphotericin B (AMB) in Clavispora (Candida) lusitaniae. This study aimed to assess the susceptibility patterns of 48 recent isolates of C. lusitaniae to 9 antifungal agents and explore the feasibility of using a CLSI reference-based method to identify AMB resistance. Microdilution techniques revealed a wide range of minimal inhibitory concentration (MIC) values for azole antifungals, while echinocandins and AMB exhibited a narrow range of MIC values, with all strains considered wild-type for the tested polyene and echinocandins. However, when agar diffusion (ellipsometry) was employed for AST, certain strains displayed colonies within the inhibition ellipse, indicating potential resistance. Interestingly, these strains did not respond to AMB treatment and were isolated during AMB treatment (breakthrough). Moreover, the evaluation of AMB minimum fungicidal concentrations (MFCs) indicated that only the strains with colonies inside the ellipse had MFC/MIC ratios ≥ 4, suggesting reduced fungicidal activity. In conclusion, this study confirms the effectiveness of ellipsometry with RPMI-1640 2% glucose agar for detecting AMB resistance in C. lusitaniae. Additionally, the proposed approach of culturing "clear" wells in the microdilution method can aid in uncovering resistant strains. The findings highlight the importance of appropriate AST methods to guide effective treatment strategies for deep-seated candidiasis caused by C. lusitaniae. Further collaborative studies are warranted to validate these findings and improve the detection of AMB clinical resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.