Abstract

Plant diseases caused by phytopathogenic fungi can lead to huge losses in the agricultural fields and therefore remain a continuous threat to the global food security. Chemical-based fungicides contributed significantly in securing crop production. However, indiscriminate application of fungicides has led to increased chemical resistance and potential risks to human health and environment. Thus, there is an urgent need for searching for new bioactive natural products and developing them into new biopesticides. Fungal endophytes, microorganisms that reside in the fresh tissues of living plants, are regarded as untapped sources of novel natural products for exploitation in agriculture and/or medicine. Chemical examination of endophytic fungi has yielded enormous antifungal natural products with potential use in the development of biopesticides. This review summarizes a total of 132 antifungal metabolites isolated from fungal endophytes in the past two decades. The emphasis is on the unique chemical diversity of these metabolic products, together with their relevant antifungal properties. Moreover, some “star molecules,” such as griseofulvin and trichothecene, as well as their synthetic derivatives that possess high potential as candidates of new natural fungicides, are also presented herein.

Highlights

  • Plant diseases caused by phytopathogenic fungi are continuing to be a huge threat in the agricultural fields

  • A new macrocyclic metabolite, chaetoglobosin X (68), was isolated from an endophytic fungus C. globosum obtained from the medicinal plant Curcuma wenyujin (Wang Y. et al, 2012). 68 possessed reasonably potent fungistatic activities on Exserohilum turcicum, F. oxysporum, and Curvularia lunata with an MIC of 7.5 μM and showed moderate activity against F. graminearum and F. moniliforme with an MIC of

  • Zhao et al reported that griseofulvin, produced by an endophyte Nigrospora sp., displayed clear growth inhibition of the test eight plant pathogenic fungi (B. cinerea, Colletotrichum orbiculare, F. oxysporum f.sp. cucumerinum, F. oxysporum f.sp. melonis, Pestalotia diospyri, Pythium ultimum, R. solani, and S. sclerotiorum) (Zhao et al, 2012)

Read more

Summary

Introduction

Plant diseases caused by phytopathogenic fungi are continuing to be a huge threat in the agricultural fields. 14 cytochalasins (Figure 1) isolated from fungal endophytes were reported to possess moderate to potent antifungal activity. Compound 4 displayed potent selective activities against C. gloeosporioides and Rhizoctonia solani, with MIC values of 6.13 and 12.26 μM, respectively, which were about ten-fold and two-fold better than that of the positive control carbendazim (Zhu et al, 2017b).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.