Abstract

A series of new metal complexes, [Zn(KTZ)2(Ac)2]·H2O (1), [Zn(KTZ)2Cl2]·0.4CH3OH (2), [Zn(KTZ)2(H2O)(NO3)](NO3) (3), [Cu(KTZ)2(Ac)2]·H2O (4), [Cu(KTZ)2Cl2]·3.2H2O (5), [Cu(KTZ)2(H2O)(NO3)](NO3)·H2O (6), were synthesized by a reaction of ketoconazole (KTZ) with their respective zinc or copper salts under mild conditions. Similarly, six corresponding metal-CTZ (clotrimazole) complexes [Zn(CTZ)2(Ac)2]·4H2O (7), [Zn(CTZ)2Cl2] (8), [Zn(CTZ)2(H2O)(NO3)](NO3)·4H2O (9), [Cu(CTZ)2(Ac)2]·H2O (10), [Cu(CTZ)2Cl2]·2H2O (11), [Cu(CTZ)2(H2O)(NO3)](NO3)·2H2O (12), were obtained. These metal complexes were characterized by elemental analyses, molar conductivity, 1H and 13C{1H} nuclear magnetic resonance, UV/Vis, and infrared spectroscopies. Further, the crystal structure for complexes 7 and 10 was determined by single-crystal X-ray diffraction. The antifungal activity of these metal complexes was evaluated against three fungal species of medical relevance: Candida albicans, Cryptococcus neoformans, and Sporothrix brasiliensis. Complexes 1 and 3 exhibited the greatest antifungal activity with a broad spectrum of action at low concentrations and high selectivity. Some morphological changes induced by these metal complexes in S. brasiliensis cells included yeast-hyphae conversion, an increase in cell size and cell wall damage. The strategy of coordination of clinic drugs (KTZ and CTZ) to zinc and copper was successful, since the corresponding metal complexes were more effective than the parent drug. Particularly, the promising antifungal activities displayed by Zn-KTZ complexes make them potential candidates for the development of an alternative drug to treat mycoses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call