Abstract
This review is devoted to a broad analysis of the results of studies of the effect of macrocyclic antifungal polyene antibiotic amphotericin B on cell membranes. A multi-prolonged study of polyenes showed that some of them can have not only antifungal, but also antiviral and antitumor action. Fungal pathology develops especially quickly and in this case leads to invasive aspergillosis, which contributes to the complication of coronavirus infection in the lungs and even secondary infection with invasive aspergillosis in the context of a global pandemic. The treatment of an invasive form of bronchopulmonary aspergillosis is directly related to the immunomodulatory and immunostimulating properties of the macrocyclic polyene drug amphotericin B. The article presents experimental data on the study of the biological activity and membrane properties of amphotericin B and the effect of its chemically modified derivatives, as well as liposomal forms of amphotericin B on viral, bacterial and fungal infections. The mechanism of action of amphotericin B and its analogues is based on their interaction with cellular and lipid membranes, by forming ion channels of molecular size in them. The importance of these studies is that polyenes are sensitive to membranes that contain sterols of a certain structure. The analysis showed that pathogenic fungal cells containing ergosterol were 10-100 times more sensitive to polyene antibiotics than host cell membranes containing cholesterol. The high sterol selectivity of the action of polyenes opens up broad prospects for the use of polyene antifungal drugs in practical medicine and pharmacology in the treatment of invasive mycoses and the prevention of atherosclerosis. In this connection, it should be noted that polyene antibiotics are the main tool in the study of the biochemical mechanism of changes in the permeability of cell membranes for energy-dependent substrates. Chemical and genetic engineering transformation of the structure of polyene antibiotic molecules opens up prospects for the identification and creation of new biologically active forms of the antibiotic that have a high selectivity of action in the treatment of pathogenic infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.