Abstract

ABSTRACTInvasive fungal diseases cause millions of deaths each year. There are currently approximately 300,000 acute cases of aspergillosis, most of which result from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus. Patients are treated with antifungal drugs, such as amphotericin B (AmB). However, AmB has serious limitations due to human organ toxicity. AmB is slightly less toxic if loaded in liposomes, such as AmBisome or AmB-loaded liposomes (AmB-LLs). Even with antifungal therapy, recurrent infections are common, and 1-year fatality rates may exceed 50%. We have previously shown that coating AmB-LLs with the extracellular oligomannan-binding domain of the C-type lectin receptor Dectin-2 (DEC2-AmB-LLs) effectively targets DEC2-AmB-LLs to cell walls, exopolysaccharide matrices, and biofilms of fungal pathogens in vitro. In vitro, DEC2-AmB-LLs reduce the effective dose of AmB for 95% inhibition and killing of A. fumigatus 10-fold compared to that of untargeted AmB-LLs. Herein we tested the antifungal activity of DEC2-AmB-LLs relative to that of untargeted AmB-LLs in immunosuppressed mice with pulmonary aspergillosis. Remarkably, DEC2-AmB-LLs bound 30-fold more efficiently to A. fumigatus at sites of infection in the lungs. Furthermore, Dectin-2-targeted liposomes delivering AmB at a dose of 0.2 mg/kg of body weight significantly reduced the fungal burden in lungs compared to results with untargeted AmB-LLs at 0.2 mg/kg and micellar voriconazole at 20 mg/kg and prolonged mouse survival. By dramatically increasing the efficacy of antifungal drugs at low doses, targeted liposomes have the potential to create a new clinical paradigm to treat diverse fungal diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.